Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
1.
BMC Microbiol ; 22(1): 15, 2022 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-34996376

RESUMO

BACKGROUND: Psyllids (Hemiptera: Psylloidea) comprise a group of plant sap-sucking insects that includes important agricultural pests. They have close associations not only with plant pathogens, but also with various microbes, including obligate mutualists and facultative symbionts. Recent studies are revealing that interactions among such bacterial populations are important for psyllid biology and host plant pathology. In the present study, to obtain further insight into the ecological and evolutionary behaviors of bacteria in Psylloidea, we analyzed the microbiomes of 12 psyllid species belonging to the family Psyllidae (11 from Psyllinae and one from Macrocorsinae), using high-throughput amplicon sequencing of the 16S rRNA gene. RESULTS: The analysis showed that all 12 psyllids have the primary symbiont, Candidatus Carsonella ruddii (Gammaproteobacteria: Oceanospirillales), and at least one secondary symbiont. The majority of the secondary symbionts were gammaproteobacteria, especially those of the family Enterobacteriaceae (order: Enterobacteriales). Among them, symbionts belonging to "endosymbionts3", which is a genus-level monophyletic group assigned by the SILVA rRNA database, were the most prevalent and were found in 9 of 11 Psyllinae species. Ca. Fukatsuia symbiotica and Serratia symbiotica, which were recognized only as secondary symbionts of aphids, were also identified. In addition to other Enterobacteriaceae bacteria, including Arsenophonus, Sodalis, and "endosymbionts2", which is another genus-level clade, Pseudomonas (Pseudomonadales: Pseudomonadaceae) and Diplorickettsia (Diplorickettsiales: Diplorickettsiaceae) were identified. Regarding Alphaproteobacteria, the potential plant pathogen Ca. Liberibacter europaeus (Rhizobiales: Rhizobiaceae) was detected for the first time in Anomoneura mori (Psyllinae), a mulberry pest. Wolbachia (Rickettsiales: Anaplasmataceae) and Rickettsia (Rickettsiales: Rickettsiaceae), plausible host reproduction manipulators that are potential tools to control pest insects, were also detected. CONCLUSIONS: The present study identified various bacterial symbionts including previously unexpected lineages in psyllids, suggesting considerable interspecific transfer of arthropod symbionts. The findings provide deeper insights into the evolution of interactions among insects, bacteria, and plants, which may be exploited to facilitate the control of pest psyllids in the future.


Assuntos
Gammaproteobacteria/isolamento & purificação , Hemípteros/microbiologia , Microbiota , Animais , Afídeos/microbiologia , Gammaproteobacteria/classificação , Gammaproteobacteria/genética , Hemípteros/classificação , Liberibacter/classificação , Liberibacter/genética , Liberibacter/isolamento & purificação , Filogenia , Doenças das Plantas/microbiologia , Doenças das Plantas/parasitologia , Rickettsia/classificação , Rickettsia/genética , Rickettsia/isolamento & purificação , Serratia/classificação , Serratia/genética , Serratia/isolamento & purificação , Simbiose , Wolbachia/classificação , Wolbachia/genética , Wolbachia/isolamento & purificação
2.
Artigo em Inglês | MEDLINE | ID: mdl-33900905

RESUMO

A novel Gram-negative, facultatively anaerobic, non-spore-forming and rod-shaped bacterial strain (KUDC3025T) was isolated from rhizospheric soil of Artemisia japonica subsp. littoricola collected from the Dokdo Islands, Republic of Korea and bacterial strain MYb239 was isolated from compost from Kiel, Germany. Phylogenetic analysis based on 16S rRNA gene sequences, multilocus genes (atpD, gyrB, infB and rpoB), and whole-genome sequences indicated that both strains belonged to the genus Serratia and were most closely related to Serratia rubidaea KCTC 2927T. The average nucleotide identity values based on blast and MUMmer, tetranucleotide usage pattern and genome-based digital DNA-DNA hybridization values were all below the 95.0 %/95.0 %/0.998/70 % cutoff points. The genome G+C content was 58.0 mol%. The cellular quinone content contained ubiquinone-8 and the major components in the fatty acid profile were C16 : 0, C17 : 0 cyclo and C14 : 0. The polar lipid profile included diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, four unknown amino lipids, two unknown phospholipids and an unknown lipid. Based on phenotypic, chemotaxonomic and genotypic data, strain KUDC3025T (DSM 106578T=CGMCC 1.18473T) and MYb239 represents a novel species, for which the name Serratia rhizosphaerae sp. nov. is proposed. Furthermore, strain KUDC3025T was able to suppress disease symptoms by priming the plant defence system components, including the salicylic acid and ethylene pathways, furthering our understanding of Serratia as potential plant growth promoting bacteria.


Assuntos
Resistência à Doença , Filogenia , Doenças das Plantas/microbiologia , Serratia/classificação , Microbiologia do Solo , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Alemanha , Ilhas , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , República da Coreia , Rizosfera , Análise de Sequência de DNA , Serratia/isolamento & purificação
3.
Int J Mol Sci ; 22(6)2021 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-33809980

RESUMO

Phospholipases D (PLDs) play important roles in different organisms and in vitro phospholipid modifications, which attract strong interests for investigation. However, the lack of PLD structural information has seriously hampered both the understanding of their structure-function relationships and the structure-based bioengineering of this enzyme. Herein, we presented the crystal structure of a PLD from the plant-associated bacteria Serratia plymuthica strain AS9 (SpPLD) at a resolution of 1.79 Å. Two classical HxKxxxxD (HKD) motifs were found in SpPLD and have shown high structural consistence with several PLDs in the same family. While comparing the structure of SpPLD with the previous resolved PLDs from the same family, several unique conformations on the C-terminus of the HKD motif were demonstrated to participate in the arrangement of the catalytic pocket of SpPLD. In SpPLD, an extented loop conformation between ß9 and α9 (aa228-246) was found. Moreover, electrostatic surface potential showed that this loop region in SpPLD was positively charged while the corresponding loops in the two Streptomyces originated PLDs (PDB ID: 1F0I, 2ZE4/2ZE9) were neutral. The shortened loop between α10 and α11 (aa272-275) made the SpPLD unable to form the gate-like structure which existed specically in the two Streptomyces originated PLDs (PDB ID: 1F0I, 2ZE4/2ZE9) and functioned to stabilize the substrates. In contrast, the shortened loop conformation at this corresponding segment was more alike to several nucleases (Nuc, Zuc, mZuc, NucT) within the same family. Moreover, the loop composition between ß11 and ß12 was also different from the two Streptomyces originated PLDs (PDB ID: 1F0I, 2ZE4/2ZE9), which formed the entrance of the catalytic pocket and were closely related to substrate recognition. So far, SpPLD was the only structurally characterized PLD enzyme from Serratia. The structural information derived here not only helps for the understanding of the biological function of this enzyme in plant protection, but also helps for the understanding of the rational design of the mutant, with potential application in phospholipid modification.


Assuntos
Domínio Catalítico , Modelos Moleculares , Fosfolipase D/química , Conformação Proteica , Serratia/enzimologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Catálise , Biologia Computacional/métodos , Sequência Conservada , Cristalografia por Raios X , Fosfolipase D/genética , Fosfolipase D/isolamento & purificação , Fosfolipase D/metabolismo , Filogenia , Plantas/microbiologia , Serratia/classificação , Serratia/genética
4.
Arch Microbiol ; 203(2): 549-559, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32980917

RESUMO

In the present study, the nematicidal activity of an isolated strain of Mimosa pudica nodules was evaluated against the Nacobbus aberrans (J2) phytonymatodes with a mortality of 88.8%, while against the gastrointestinal nematode Haemonchus contortus (L3) and free-living Panagrellus redivivus was 100%. The ability to inhibit the growth of phytopathogenic fungi Fusarium sp., and Alternaria solani, as well as the oomycete Phytophthora capsici, this antifungal activity may be related to the ability to produce cellulases, siderophores and chitinases by this bacterial strain. Another important finding was the detection of plant growth promoter characteristics, such as auxin production and phosphate solubilization. The strain identified by sequences of the 16S and rpoB genes as Serratia sp. is genetically related to Serratia marcescens and Serratia nematodiphila. The promoter activity of plant growth, antifungal and nematicide of the Serratia sp. strain makes it an alternative for the biocontrol of fungi and nematodes that affect both the livestock and agricultural sectors, likewise, candidate as a growth-promoting bacterium.


Assuntos
Fungos/efeitos dos fármacos , Mimosa/microbiologia , Nematoides/efeitos dos fármacos , Nódulos Radiculares de Plantas/microbiologia , Serratia/química , Alternaria/efeitos dos fármacos , Animais , Antifúngicos/farmacologia , Proteínas de Bactérias/genética , Quitinases/metabolismo , Endófitos/química , Endófitos/fisiologia , Fusarium/efeitos dos fármacos , Ácidos Indolacéticos/metabolismo , Mimosa/efeitos dos fármacos , Phytophthora/efeitos dos fármacos , RNA Ribossômico 16S/genética , Serratia/classificação , Serratia/enzimologia , Serratia/genética , Especificidade da Espécie
5.
Int J Syst Evol Microbiol ; 70(7): 4204-4211, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32553053

RESUMO

A novel bacterial strain, S40T, with strong antifungal activity was isolated from the rhizosphere of green potato collected from Zealand, Denmark. Polyphasic analysis with a combined phenotypic, phylogenetic and genomic approach was used to characterize S40T. Phylogenetic analysis based on the 16S rRNA gene and MLSA (concatenated gyrB, rpoD, infB and atpD sequences) showed that strain S40T was affiliated with the genus Serratia and with Serratia plymuthica PRI-2C as the closest related strain [average nucleotide identity (ANI), 99.26 %; DNA-DNA hybridization (dDDH), 99.20%]. However, whole genome sequence analyses revealed that S40T and S. plymuthica PRI-2C genomes displayed lower similarities when compared to all other S. plymuthica strains (ANI ≤94.34 %; dDDH ≤57.6 % relatedness). The DNA G+C content of strain S40T was determined to be 55.9 mol%. Cells of the strain were Gram-negative, rod-shaped, facultative anaerobic and displayed growth at 10-37 °C (optimum, 25-30 °C) and at pH 6-9 (optimum, pH 6-7). Major fatty acids were C16 : 0 (27.9 %), summed feature (C16 : 1 ω6c/C16 : 1 ω7c; 18.0 %) and C17 : 0 cyclo (15.1 %). The respiratory quinone was determined to be Q8 (94 %) and MK8 (95 %) and the major polar lipids were phosphatidylethanolamine and phosphatidylglycerol. The results of phenotypic, phylogenetic and genomic analyses support the hypothesis that strain S40T represents a novel species of the genus Serratia, for which the name Serratia inhibens sp. nov. is proposed. The type strain is S40T (=LMG 31467T=NCIMB 15235T). In addition, we propose that S. plymuthica PRI-2C is reclassified and transferred to the species S. inhibens as S. inhibens PRI-2C.


Assuntos
Antibiose , Filogenia , Serratia/classificação , Solanum tuberosum/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Dinamarca , Ácidos Graxos/química , Genes Bacterianos , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Rizosfera , Análise de Sequência de DNA , Serratia/isolamento & purificação , Ubiquinona/química , Vitamina K 2/análogos & derivados , Vitamina K 2/química
6.
Pediatr Infect Dis J ; 39(6): e71-e73, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32091494

RESUMO

Serratia can cause serious bloodstream infections (BSIs). This retrospective cohort study identified 5,312 pediatric inpatient encounters with BSIs from 2009 to 2016, of which 82 (0.01%) had Serratia BSIs. The rate among hospitalized patients increased significantly from 0.4 in 2009 to 1.0 in 2016 per 10,000 admissions. Risk factors differed and outcomes were worse for Serratia BSIs compared with non-Serratia BSIs.


Assuntos
Bacteriemia/epidemiologia , Hospitalização/estatística & dados numéricos , Infecções por Serratia/epidemiologia , Adolescente , Criança , Pré-Escolar , Infecção Hospitalar , Feminino , Hospitalização/economia , Humanos , Lactente , Recém-Nascido , Masculino , Estudos Retrospectivos , Fatores de Risco , Serratia/classificação , Serratia/patogenicidade , Infecções por Serratia/economia , Estados Unidos/epidemiologia
7.
Syst Appl Microbiol ; 43(2): 126055, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31992497

RESUMO

Fifteen enterobacterial strains were isolated from fresh produce. The 16S rRNA gene sequences indicated that these belong to Serratia, with twelve strains showing 99.57%-99.93% and three strains showing 99.86-100% 16S rRNA gene sequence similarity with Serratia marcescens and Serratia nematodiphila as nearest neighbors, respectively. Further comparative multi locus sequence analyses, as well as phylogenomic comparisons, revealed that 6 of the 15 strains were well-separated from their nearest neighbors and formed two clearly distinct taxa. Strains S2, S9, S10 and S15T were urease-positive, while strains S3T and S13 were urease-negative. Average nucleotide identity and digital DNA-DNA hybridization comparisons of representative strains S3T and S15T with type strains of S. marcescens, S. nematodiphila and S. ureilytica indicated that these shared less than 96% and 70% homology, respectively. Major fatty acids of strains S3T and S15T included C16:0, C16:1 ω7c/C16:1 ω6c, C17:0 Cyclo and C18:1 ω6c /C18:1 ω7c. The mol% G+C of genomic DNA of strain S15T was 59.49% and of strain S3T was 59.04. These results support the description of two novel species, Serratia nevei and Serratia bockelmannii, with strains S15T (=LMG 31536T =DSM 110085T) and S3T (=LMG 31535T =DSM 110152T) as type strains, respectively. Although Serratia marcescens subsp. sakuensis was previously described to form spores, spores could not be determined in this study. As spore formation was the only differential characteristic of this subspecies, S. marcescens subsp. sakuensis is a later heterotypic synonym of Serratia marcescens.


Assuntos
Microbiologia de Alimentos , Filogenia , Serratia/classificação , Proteínas de Bactérias/genética , DNA Bacteriano/genética , Ácidos Graxos/análise , Genoma Bacteriano/genética , Genótipo , Alemanha , Hibridização de Ácido Nucleico , Fenótipo , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Serratia/química , Serratia/genética , Serratia/isolamento & purificação , Esporos Bacterianos/citologia , Esporos Bacterianos/crescimento & desenvolvimento
8.
Int J Syst Evol Microbiol ; 70(3): 1961-1962, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31971498

RESUMO

A previous 16S rRNA gene sequence comparison had demonstrated that the type strains of Serratia vespertilionis and Serratia ficaria shared 99.5 % sequence similarity. Despite the 56.2 % homology by DNA-DNA hybridization previously found between these strains, the results of an in silico whole-genome sequence comparison and a new DNA-DNA hybridization study have clearly demonstrated that the genomes of the type strain of S. vespertilionis deposited in different Culture Collections (52T=CECT 8595T=DSM 28727T) and the type strain of S. ficaria (culture DSM 4569T), cannot support such a species differentiation. Tests for substrate utilization redone on the deposited cultures of these strains has also shown very few differences between the type strains of both species. Based on these results, and since the name S. ficaria was validly published earlier, S. vespertilionis should be considered as a later heterotypic synonym of S. ficaria, in application of the priority rule. The type strain of the species S. ficaria is strain 4024T=DSM 4569T=NCTC 12148T=ATCC 33105T=CIP 79.23T=ICPB 4050T.


Assuntos
Filogenia , Serratia/classificação , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Sequenciamento Completo do Genoma
9.
Antonie Van Leeuwenhoek ; 112(10): 1447-1456, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31089912

RESUMO

A Gram-stain negative, facultatively anaerobic, rod-shaped, non-motile and non-spore forming bacterium, designated ZS-11T, was isolated from an artificial freshwater lake in Guangzhou city, Guangdong province, China. Growth of strain ZS-11T was observed at the temperature 18-42 °C (optimum 32-37 °C), pH 6.0-8.0 (optimum 7.0) and 0.5-3.0% (w/v) NaCl (optimum 0.5%, w/v), and also found to be enhanced in the presence of CO2. Pairwise comparison of 16S rRNA gene sequences showed that the strain shared high similarities with Serratia entomophila DSM 12358T (96.1%), Serratia ficaria DSM 4569T (96.0%), Serratia plymuthica DSM 4540T (96.0%), Rahnella victoriana FRB 225T (95.9%) and Rouxiella badensis DSM 100043T (95.8%). The phylogenomic dendrograms showed that strain ZS-11T formed a distinct cluster within the clade of the genus Serratia. The major fatty acids (> 20%) present in the cells were C16:0, C16:1ω7c/C16:1ω6c and C18:1ω7c/C18:1ω6c, which were consistent with those of S. entomophila CCUG 55496T and Serratia liquefaciens CCUG 9285T. The DNA G + C content for the genome was 49.3%. Based on these phenotypic and genotypic data, strain ZS-11T is considered to represent a new species of the genus Serratia, for which the name Serratia microhaemolytica sp. nov. is proposed. The type strain is ZS-11T (= CCTCC AB 2018040T = KCTC 62413T).


Assuntos
Lagos/microbiologia , Serratia/classificação , Serratia/isolamento & purificação , Anaerobiose , Técnicas de Tipagem Bacteriana , Composição de Bases , China , Análise por Conglomerados , Citosol/química , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Ácidos Graxos/análise , Água Doce/microbiologia , Concentração de Íons de Hidrogênio , Locomoção , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Serratia/genética , Serratia/fisiologia , Cloreto de Sódio/metabolismo , Temperatura
10.
J Food Sci ; 84(6): 1487-1493, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31066925

RESUMO

This paper investigates the bacterial microbiota in tilapia fillets under cold (4 °C), iced (0 °C), and superchilled (-3 °C) storage conditions. At 4 °C, at least seven species/strains of Pseudomonas were detected in the fillets, five of which were dominant either at a certain stage or throughout the entire storage period. Shewanella was less dominant than Pseudomonas at 4 °C, while Serratia became dominant after 6 days storage at 4 °C. The microbiota in fillets stored at 0 and -3 °C were very similar and rarely changed during storage, yet differed greatly from the microbiota at 4 °C. Only two Pseudomonas species/strains grew at 0 and -3 °C, one of which was the most dominant. A Vibrionimonas sp. not found at 4 °C was found to be the second most dominant species at 0 and -3 °C. Shewanella and Psychrobacter were also present at 0 and -3 °C but were the minor genera. The most dominant strains at -3, 0, and 4 °C were separately isolated and subjected to full length 16S rDNA sequencing, which demonstrated that they were identical and were Pseudomonas fluorescens. The changes of the total bacterial count and TVBN value of the fillets inoculated with the isolated P. fluorescens were very similar to those of fillets with natural microbiota. This implies that P. fluorescens is the most important spoiler of tilapia fillets at -3, 0, or 4 °C. PRACTICAL APPLICATION: This research shows that fewer species of bacteria survive at 0 and -3 °C than those at 4 °C, while among these bacteria, the most important spoiler is P. fluorescens. This may provide some clues to extend the shelf life of tilapia fillets by taking some inhibitory measures targeted at P. fluorescens in the future.


Assuntos
Bactérias/isolamento & purificação , Armazenamento de Alimentos/métodos , Microbiota/fisiologia , Temperatura , Tilápia/microbiologia , Animais , Bactérias/classificação , Bactérias/genética , Carga Bacteriana , Temperatura Baixa , DNA Bacteriano/análise , DNA Ribossômico , Pseudomonas/classificação , Pseudomonas/genética , Pseudomonas/isolamento & purificação , RNA Ribossômico 16S/genética , Serratia/classificação , Serratia/genética , Serratia/isolamento & purificação , Fatores de Tempo
11.
Mol Biol Rep ; 46(3): 3167-3181, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30980268

RESUMO

A new thermophilic non-induced lipase producer named Serratia rubidaea strain Nehal-mou was isolated from oil waste in Tissemsilat, Algeria. The most influential lipase production parameters were screened by the Plackett-Burman design for enhancing enzyme yield. An optimum condition of a 1.5% of glucose, a 0.01% of potassium, and a 0.025% of manganese contents resulted in a 41.13 U/mL. This yield was 6.29 times higher than the one achieved before the application of the Box-Behnken Design. Lipase activity showed a high organic solvent tolerance following its exposure to hexane, ethanol, methanol, and acetone. Lipase was also perfectly stable in the presence of 10 mM Fe2+, K+, and Na+ ions with more than 75% of the retaining activity. The enzyme half-life times were 22 h, 90 min, and 25 min at 50, 60, and 70 °C respectively. Polyvinyl alcohol (PVA)/boric acid/Starch/CaCO3 were utilized as a carrier for lipase covalent immobilization in order to be used efficiently. The Scanning Electron Microscopy (SEM) Technique and the Fourier Transform Infrared Spectroscopy (FTIR) Method confirmed the covalent bonding success and the excellent carrier characteristics. Thus, the immobilization yield reached 73.5% and the optimum temperature was shifted from 40 to 65 °C. The immobilized lipase kept 80% of its total activity after 10 cycles and had 3 and 3.2-fold half-lives at 70, and 80 °C respectively compared to the free enzyme.


Assuntos
Enzimas Imobilizadas , Lipase/química , Lipase/isolamento & purificação , Serratia/enzimologia , Termodinâmica , Ativação Enzimática , Estabilidade Enzimática , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Varredura , Filogenia , RNA Ribossômico 16S , Serratia/classificação , Serratia/genética , Espectroscopia de Infravermelho com Transformada de Fourier , Temperatura
12.
Microbiol Res ; 218: 76-86, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30454661

RESUMO

Legumes establish symbiotic relationships with different microorganisms, which could function as plant growth promotion microorganisms (PGPM). The finding of new PGPM strains is important to increase plant production avoiding or diminishing the use of industrial fertilizers. Thus, in this work we evaluated the plant growth promotion traits of ten strains isolated from Mimosa pudica root nodules. According to the 16S rDNA sequence, the microorganisms were identified as Enterobacter sp. and Serratia sp. To the best of our knowledge this is the first report describing and endophytic interaction between Mimosa pudica and Enterobacter sp. These strains have some plant growth promoting traits such as phosphate solubilization, auxin production and cellulase and chitinase activity. Strains identified as Serratia sp. inhibited the growth of the phytopathogenic fungi Fusarium sp., and Alternaria solani and the oomycete Phytophthora capsici. According to their biochemical characteristics, three strains were selected to test their plant growth promoting activity in a medium with an insoluble phosphate source. These bacteria show low specificity for their hosts as endophytes, since they were able to colonize two very different legumes: Phaseolus vulgaris and M. pudica. Seedlings of P. vulgaris were inoculated and grown for fifteen days. Enterobacter sp. NOD1 and NOD10, promoted growth as reflected by an increase in shoot height as well as an increase in the size and emergence of the first two trifolia. We could localize NOD5 as an endophyte in roots in P. vulgaris by transforming the strain with a Green Fluorescent Protein carrying plasmid. Experiments of co-inoculation with different Rhizobium etli strains allowed us to discard that NOD5 can fix nitrogen in the nodules formed by a R. etli Fix- strain. The isolates described in this work show biotechnological potential for plant growth promoting activity and production of indoleacetic acid and siderophores.


Assuntos
Endófitos/metabolismo , Enterobacter/isolamento & purificação , Ácidos Indolacéticos/metabolismo , Mimosa/microbiologia , Phaseolus/microbiologia , Nódulos Radiculares de Plantas/microbiologia , Serratia/isolamento & purificação , Alternaria/crescimento & desenvolvimento , Quitinases/metabolismo , Endófitos/isolamento & purificação , Enterobacter/classificação , Enterobacter/genética , Fusarium/crescimento & desenvolvimento , Mimosa/crescimento & desenvolvimento , Phaseolus/crescimento & desenvolvimento , Phytophthora/crescimento & desenvolvimento , Reguladores de Crescimento de Plantas/metabolismo , Serratia/classificação , Serratia/genética
13.
Trans R Soc Trop Med Hyg ; 112(10): 467-472, 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30107587

RESUMO

Background: Human infections with Serratia spp. are generally limited to Serratia marcescens and the Serratia liquefaciens complex. There is little data regarding the infections caused by the remaining Serratia spp., as they are seldom isolated from clinical specimens. Methods: In this health care setting in Kathmandu, Nepal routine blood culture is performed on all febrile patients with a temperature >38°C or when there is clinical suspicion of bacteremia. During 2015 we atypically isolated and identified several Serratia spp. We extracted clinical data from these cases and performed whole genome sequencing on all isolates using a MiSeq system (Ilumina, San Diego, CA, USA). Results: Between June and November 2015, we identified eight patients with suspected bacteremia that produced a positive blood culture for Serratia spp., six Serratia rubidaea and five Serratia marcescens. The S. rubidaea were isolated from three neonates and were concentrated in the neonatal intensive care unit between June and July 2015. All patients were severely ill and one patient died. Whole genome sequencing confirmed that six Nepalese S. rubidaea sequences were identical and indicative of a single-source outbreak. Conclusions: Despite extensive screening we were unable to identify the source of the outbreak, but the inferred timeline suggested that these atypical infections were associated with the aftermath of two massive earthquakes. We speculate that deficits in hygienic behavior, combined with a lack of standard infection control, in the post-earthquake emergency situation contributed to these unusual Serratia spp. outbreaks.


Assuntos
Infecção Hospitalar/microbiologia , Terremotos , Controle de Infecções/métodos , Unidades de Terapia Intensiva Neonatal , Infecções por Serratia/epidemiologia , Infecções por Serratia/microbiologia , Serratia/patogenicidade , Humanos , Recém-Nascido , Recém-Nascido Prematuro/imunologia , Testes de Sensibilidade Microbiana , Nepal/epidemiologia , Serratia/classificação , Serratia/isolamento & purificação , Infecções por Serratia/tratamento farmacológico , Infecções por Serratia/fisiopatologia , Serratia marcescens/isolamento & purificação , Serratia marcescens/patogenicidade
14.
Appl Environ Microbiol ; 84(10)2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29549100

RESUMO

A highly virulent Serratia proteamaculans strain, AGR96X, exhibiting specific pathogenicity against larvae of the New Zealand grass grub (Costelytra giveni; Coleoptera: Scarabaeidae) and the New Zealand manuka beetle (Pyronota festiva and P. setosa; Coleoptera: Scarabaeidae), was isolated from a diseased grass grub larva. A 12-day median lethal dose of 4.89 × 103 ± 0.92 × 103 cells per grass grub larva was defined for AGR96X, and death occurred within 5 to 12 days following the ingestion of a high bacterial dose. During the infection period, the bacterium rapidly multiplied within the insect host and invaded the hemocoel, leading to a mean bacterial load of 8.2 × 109 cells per larva at 6 days postingestion. Genome sequencing of strain AGR96X revealed the presence of a variant of the Serratia entomophila antifeeding prophage (Afp), a tailocin designated AfpX. Unlike Afp, AfpX contains two Afp16 tail-length termination protein orthologs and two putative toxin components. A 37-kb DNA fragment encoding the AfpX-associated region was cloned, transformed into Escherichia coli, and fed to C. giveni and Pyronota larvae, causing mortality. In addition, the deletion of the afpX15 putative chaperone component abolished the virulence of AGR96X. Unlike S. entomophila Afp, the AfpX tailocin could be induced by mitomycin C. Transmission electron microscopy analysis revealed the presence of Afp-like particles of various lengths, and when the purified AfpX tailocin was fed to grass grub or manuka beetle larvae, they underwent phenotypic changes similar to those of larvae fed AGR96X.IMPORTANCESerratia proteamaculans strain AGR96X shows dual activity against larvae of endemic New Zealand pasture pests, the grass grub (Costelytra giveni) and the manuka beetle (Pyronota spp.). Unlike Serratia entomophila, the causal agent of amber disease, which takes 3 to 4 months to kill grass grub larvae, AGR96X causes mortality within 5 to 12 days of ingestion and invades the insect hemocoel. AGR96X produces a unique variant of the S. entomophila antifeeding prophage (Afp), a cell-free phage-like entity that is proposed to deliver protein toxins to the grass grub target site, causing a cessation of feeding activity. Unlike other Afp variants, AGR96X Afp, named AfpX, contains two tail-length termination proteins, resulting in greater variability in the AfpX length. AfpX shows dual activity against both grass grub and manuka beetle larvae. AGR96X is a viable alternative to S. entomophila for pest control in New Zealand pasture systems.


Assuntos
Besouros/microbiologia , Besouros/fisiologia , Controle de Insetos/métodos , Prófagos/fisiologia , Serratia/virologia , Sequência de Aminoácidos , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Comportamento Alimentar , Larva/microbiologia , Larva/fisiologia , Nova Zelândia , Filogenia , Prófagos/genética , Prófagos/isolamento & purificação , Alinhamento de Sequência , Serratia/classificação , Serratia/genética , Serratia/patogenicidade , Virulência
15.
Microb Ecol ; 75(4): 1049-1062, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29119317

RESUMO

Symbiotic bacteria can produce secondary metabolites and volatile compounds that contribute to amphibian skin defense. Some of these symbionts have been used as probiotics to treat or prevent the emerging disease chytridiomycosis. We examined 20 amphibian cutaneous bacteria for the production of prodigiosin or violacein, brightly colored defense compounds that pigment the bacteria and have characteristic spectroscopic properties making them readily detectable, and evaluated the antifungal activity of these compounds. We detected violacein from all six isolates of Janthinobacterium lividum on frogs from the USA, Switzerland, and on captive frogs originally from Panama. We detected prodigiosin from five isolates of Serratia plymuthica or S. marcescens, but not from four isolates of S. fonticola or S. liquefaciens. All J. lividum isolates produced violacein when visibly purple, while prodigiosin was only detected on visibly red Serratia isolates. When applied to cultures of chytrid fungi Batrachochytrium dendrobatidis (Bd) and B. salamandrivorans (Bsal), prodigiosin caused significant growth inhibition, with minimal inhibitory concentrations (MIC) of 10 and 50 µM, respectively. Violacein showed a MIC of 15 µM against both fungi and was slightly more active against Bsal than Bd at lower concentrations. Although neither violacein nor prodigiosin showed aerosol activity and is not considered a volatile organic compound (VOC), J. lividum and several Serratia isolates did produce antifungal VOCs. White Serratia isolates with undetectable prodigiosin levels could still inhibit Bd growth indicating additional antifungal compounds in their chemical arsenals. Similarly, J. lividum can produce antifungal compounds such as indole-3-carboxaldehyde in addition to violacein, and isolates are not always purple, or turn purple under certain growth conditions. When Serratia isolates were grown in the presence of cell-free supernatant (CFS) from the fungi, CFS from Bd inhibited growth of the prodigiosin-producing isolates, perhaps indicative of an evolutionary arms race; Bsal CFS did not inhibit bacterial growth. In contrast, growth of one J. lividum isolate was facilitated by CFS from both fungi. Isolates that grow and continue to produce antifungal compounds in the presence of pathogens may represent promising probiotics for amphibians infected or at risk of chytridiomycosis. In a global analysis, 89% of tested Serratia isolates and 82% of J. lividum isolates were capable of inhibiting Bd and these have been reported from anurans and caudates from five continents, indicating their widespread distribution and potential for host benefit.


Assuntos
Bactérias/metabolismo , Quitridiomicetos/efeitos dos fármacos , Indóis/antagonistas & inibidores , Indóis/metabolismo , Prodigiosina/antagonistas & inibidores , Prodigiosina/metabolismo , Compostos Orgânicos Voláteis/antagonistas & inibidores , Compostos Orgânicos Voláteis/metabolismo , Animais , Antifúngicos/farmacologia , Anuros/microbiologia , Bactérias/classificação , Bactérias/isolamento & purificação , Agentes de Controle Biológico/antagonistas & inibidores , Quitridiomicetos/crescimento & desenvolvimento , Quitridiomicetos/patogenicidade , Indóis/química , Testes de Sensibilidade Microbiana , Panamá , Filogenia , Prodigiosina/química , Serratia/classificação , Serratia/isolamento & purificação , Serratia/metabolismo , Pele/microbiologia , Suíça , Simbiose , Estados Unidos , Compostos Orgânicos Voláteis/química
16.
Microb Ecol ; 75(4): 1035-1048, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29119316

RESUMO

Microorganism communities that live inside insects can play critical roles in host development, nutrition, immunity, physiology, and behavior. Over the past decade, high-throughput sequencing reveals the extraordinary microbial diversity associated with various insect species and provides information independent of our ability to culture these microbes. However, their cultivation in the laboratory remains crucial for a deep understanding of their physiology and the roles they play in host insects. Aphids are insects that received specific attention because of their ability to form symbiotic associations with a wide range of endosymbionts that are considered as the core microbiome of these sap-feeding insects. But, if the functional diversity of obligate and facultative endosymbionts has been extensively studied in aphids, the diversity of gut symbionts and other associated microorganisms received limited consideration. Herein, we present a culture-dependent method that allowed us to successfully isolate microorganisms from several aphid species. The isolated microorganisms were assigned to 24 bacterial genera from the Actinobacteria, Firmicutes, and Proteobacteria phyla and three fungal genera from the Ascomycota and Basidiomycota phyla. In our study, we succeeded in isolating already described bacteria found associated to aphids (e.g., the facultative symbiont Serratia symbiotica), as well as microorganisms that have never been described in aphids before. By unraveling a microbial community that so far has been ignored, our study expands our current knowledge on the microbial diversity associated with aphids and illustrates how fast and simple culture-dependent approaches can be applied to insects in order to capture their diverse microbiota members.


Assuntos
Afídeos/microbiologia , Bactérias/isolamento & purificação , Biodiversidade , Técnicas de Cultura/métodos , Fungos/isolamento & purificação , Microbiota/fisiologia , Filogenia , Animais , Bactérias/classificação , Bactérias/genética , Bactérias/crescimento & desenvolvimento , DNA/isolamento & purificação , Fungos/classificação , Fungos/genética , Fungos/crescimento & desenvolvimento , Genes Bacterianos/genética , Genes Fúngicos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Microbiota/genética , RNA Ribossômico 16S/genética , RNA Ribossômico 18S/genética , Serratia/classificação , Serratia/isolamento & purificação , Serratia/fisiologia , Simbiose
17.
PLoS One ; 12(10): e0186355, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29023528

RESUMO

The gastrointestinal (GI) habitat of ruminant and non-ruminant animals sustains a vast ensemble of microbes that are capable of utilizing lignocellulosic plant biomass. In this study, an indigenous swine (Zovawk) and a domesticated goat (Black Bengal) were investigated to isolate bacteria having plant biomass degrading enzymes. After screening and enzymatic quantification of eighty-one obtained bacterial isolates, Serratia rubidaea strain DBT4 and Aneurinibacillus aneurinilyticus strain DBT87 were revealed as the most potent strains, showing both cellulase and xylanase production. A biomass utilization study showed that submerged fermentation (SmF) of D2 (alkaline pretreated pulpy biomass) using strain DBT4 resulted in the most efficient biomass deconstruction with maximum xylanase (11.98 U/mL) and FPase (0.5 U/mL) activities (55°C, pH 8). The present study demonstrated that bacterial strains residing in the gastrointestinal region of non-ruminant swine are a promising source for lignocellulose degrading microorganisms that could be used for biomass conversion.


Assuntos
Bacillales/enzimologia , Celulase/metabolismo , Trato Gastrointestinal/microbiologia , Serratia/enzimologia , Animais , Bacillales/classificação , Bacillales/genética , Bacillales/isolamento & purificação , Biomassa , Endo-1,4-beta-Xilanases/metabolismo , Cabras , Concentração de Íons de Hidrogênio , Cinética , Lignina/química , Lignina/metabolismo , Microscopia Eletrônica de Varredura , Filogenia , RNA Ribossômico 16S/classificação , RNA Ribossômico 16S/metabolismo , Serratia/classificação , Serratia/genética , Serratia/isolamento & purificação , Espectroscopia de Infravermelho com Transformada de Fourier , Suínos , Temperatura
18.
Curr Microbiol ; 74(11): 1343-1348, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28821942

RESUMO

A gyrB gene is present in the majority of bacterial species, and encodes the ATPase domain of DNA gyraseB-subunit protein, which is essential for transcription and replication of bacteria. The gyrB gene exhibits higher nucleotide sequence variability than the 16S rDNA gene and thus could be more reliable in differentiating Serratia fonticola. A species-specific primer pair and probe were designed for quantitative real-time PCR detection of S. fonticola using gyrB as the target gene. Nine members of the Serratia family (representing nine Serratia species) were chosen to verify the specificity of the primers. Additionally, two species each of Salmonella and Klebsiella, and five other species belonging to five other genera of Enterobacteriaceae, were tested for primer cross-reaction. All the tested strains gave negative results. The limit of detection for S. fonticola using the gyrB gene was 100 copies per PCR reaction. This TaqMan PCR assay provided a specific, rapid, and sensitive method to detect S. fonticola based on its gyrB gene.


Assuntos
Proteínas de Bactérias/genética , DNA Girase/genética , Reação em Cadeia da Polimerase em Tempo Real , Serratia/classificação , Serratia/genética , Animais , Primers do DNA , DNA Bacteriano , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
19.
Curr Microbiol ; 74(7): 827-831, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28424942

RESUMO

A Gram-negative, rod-shaped, salt-tolerant, non-pigmented, and non-spore-forming bacterium, designated strain W1T (type strain CICC 23797 = CGMCC1.14949), was isolated from sewage samples of a dairy farm in Bozhou, Anhui, China. Strain W1 was resistant to lincomycin, troleandomycin, rifamycin, and vancomycin. Sequence analysis of the 16S rDNA gene revealed that the strain showed sequence similarity of 98.2% with the closest related species Serratia quinivorans CP6aT. The genomic DNA G+C content of the isolate was 52.8 mol%. The biochemical characteristics of strain W1T assessed by the API 20E and Biolog GEN III analysis were different from those of the members of the genus Serratia. On the basis of the phenotypic and genotypic differences, strain W1 was proposed to be a novel Serratia species, Serratia bozhouensis sp. nov W1T.


Assuntos
Serratia/isolamento & purificação , Esgotos/microbiologia , Técnicas de Tipagem Bacteriana , Composição de Bases , China , DNA Bacteriano , Fazendas , Ácidos Graxos/química , Ácidos Graxos/metabolismo , Filogenia , Serratia/classificação , Serratia/genética , Serratia/metabolismo
20.
Environ Microbiol ; 19(1): 393-408, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27902872

RESUMO

Virtually all aphids maintain an obligate mutualistic symbiosis with bacteria from the Buchnera genus, which produce essential nutrients for their aphid hosts. Most aphids from the Lachninae subfamily have been consistently found to house additional endosymbionts, mainly Serratia symbiotica. This apparent dependence on secondary endosymbionts was proposed to have been triggered by the loss of the riboflavin biosynthetic capability by Buchnera in the Lachninae last common ancestor. However, an integral large-scale analysis of secondary endosymbionts in the Lachninae is still missing, hampering the interpretation of the evolutionary and genomic analyses of these endosymbionts. Here, we analysed the endosymbionts of selected representatives from seven different Lachninae genera and nineteen species, spanning four tribes, both by FISH (exploring the symbionts' morphology and tissue tropism) and 16S rRNA gene sequencing. We demonstrate that all analysed aphids possess dual symbiotic systems, and while most harbour S. symbiotica, some have undergone symbiont replacement by other phylogenetically-distinct bacterial taxa. We found that these secondary associates display contrasting cell shapes and tissue tropism, and some appear to be lineage-specific. We propose a scenario for symbiont establishment in the Lachninae, followed by changes in the symbiont's tissue tropism and symbiont replacement events, thereby highlighting the extraordinary versatility of host-symbiont interactions.


Assuntos
Afídeos/microbiologia , Buchnera/isolamento & purificação , Serratia/isolamento & purificação , Simbiose , Animais , Afídeos/fisiologia , Buchnera/classificação , Buchnera/genética , Buchnera/fisiologia , Filogenia , Serratia/classificação , Serratia/genética , Serratia/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...